Generic selectors
Exact matches only
Search in title
Search in content
Search in posts
Search in pages

Reply To: Microwave Transmission


shamsul haque rubel


why we use in some cases vertical polarization & horizontal polarization.pls answer me


If you know what polarization means then the following will be helpful in undertsnading the reasons for using H or V polarization:

Ground-wave transmission is widely used at medium and low frequencies. Horizontal polarization cannot be used at these frequencies because the electric lines of force are parallel to and touch the earth. Since the earth acts as a fairly good conductor at low frequencies, it would short out the horizontal electric lines of force and prevent the radio wave from traveling very far. Vertical electric lines of force, on the other hand, are bothered very little by the earth. Therefore vertical polarization is used for ground-wave transmission, allowing the radio wave to travel a considerable distance along the ground surface with minimum attenuation.

Sky-wave transmission is used at high frequencies. Either horizontal or vertical polarization can be used with sky-wave transmission because the sky wave arrives at the receiving antenna elliptically polarized. This is the result of the wave traveling obliquely through the Earth’s magnetic field and striking the ionosphere. The radio wave is given a twisting motion as it strikes the ionosphere. Its orientation continues to change because of the unstable nature of the ionosphere. The relative amplitudes and phase differences between the horizontal and vertical components of the received wave also change. Therefore, the transmitting and receiving antennas can be mounted either horizontally or vertically. Although either horizontally or vertically polarized antennas can be used for high frequencies, horizontally polarized antennas have certain advantages and are therefore preferred. One advantage is that vertically polarized interference signals, such as those produced by automobile ignition systems and electrical appliances, are minimized by horizontal polarization. Also, less absorption of radiated energy by buildings or wiring occurs when these antennas are used. Another advantage is that support structures for these antennas are of more convenient size than those for vertically polarized antennas. For frequencies in the vhf or uhf range, either horizontal or vertical polarization is satisfactory. These radio waves travel directly from the transmitting antenna to the receiving antenna without entering the ionosphere. The original polarization produced at the transmitting antenna is maintained throughout the entire travel of the wave to the receiver. Therefore, if a horizontally polarized antenna is used for transmitting, a horizontally polarized antenna must be used for receiving. The requirements would be the same for a vertical transmitting and receiving antenna system. For satellite communications, parallel frequencies can be used without interference by using polarized radiation. The system setup is shown in figure 4-8. One pair of satellite antennas is vertically polarized and another pair is horizontally polarized. Either vertically or horizontally polarized transmissions are received by the respective antenna and retransmitted in the same polarization. For example, transmissions may be made in the 3.7 to 3.74 GHz range on the vertical polarization path and in the 3.72 to 3.76 GHz range on the horizontal polarization path without adjacent frequency (co-channel) interference.